Carbonate Jul 15, 2024 酯的反应活性 我们知道,烷基碳酸酯正是因为有良好的耐氧化和耐还原能力,在锂离子电池电解液中得到成功的应用。但是碳酸酯并不是一种惰性的溶剂,它也是“有脾气”的。 酯交换反应 以前我们发现,贮存在贮罐中的EMC,时间长了之后,其纯度会缓慢的下降,而DMC,DEC就没有这个问题。后来 经过了解,我们才发现,碳酸酯在贮存中发生了一个有意思的副反应–酯交换反应。不对称的碳酸酯,如EMC,由于羰基两边的烷氧基不同,它们会发生两个同种分子之间的交换烷氧基的反应,生成两种新的分子:DMC和DEC。这种结构的不对称性越强,反应越容易发生。碳酸甲丙酯在精馏或用分子筛脱水的过程中,就很容易发生显著的分解,导致纯度难以提高。相比之下,EMC就稳定得多,精馏提纯就可以得到4N级的纯度。 溶剂所处的温度,以及是否有催化剂存在,对酯交换反应的速度影响也非常明显。比如一些碱性物质如碳酸钾,甲醇钠等,就是酯交换反应的催化剂。当然,DMC或DEC分子之间也是有酯交换反应的,只是生成物与原物一样,表观看不出来罢了. 在溶剂的合成中, 酯与酯之间的酯交换反应很少用于制备,但醇和酯来进行的酯交换反应却十分常用。国内常用的溶剂产业链,就是从PO开始与CO2反应制备PC,然后由PC和甲醇(或乙醇)反应制备DMC(或DEC),再由DMC与乙醇反应制备EMC等。而国外的碳酸酯工业,却较多的从EO开始制备EC,再DMC,EMC。 碳酸酯与酸的反应 虽然碳酸酯在锂电池中的应用非常广泛,但是有机化学教材中对碳酸酯的化学特性的介绍却非常的少。为了弥补这一方面的缺限,去年我们做了一些这方面的研究实验,有针对性的总结了一些常见酸碱与碳酸酯的反应活性的规律,发现了一些意想不到的现象。目前该结果已经发表在《储能科学与技术》(《碳酸酯与酸碱的化学反应》 DOI: 10.12028/j.issn.2095-4239.2017.0006), 碳酸酯与酸碱的化学反应.pdf 这里就简单介绍下部分内容。 碳酸酯类比较容易和有机酸反应,如草酸、醋酸等,但是和无机酸如盐酸、硫酸的反应相对而言要缓和一些。总体而言,和酸反应,PC比EC明显更加活泼,带有取代基的环状碳酸酯如氯代碳酸乙烯酯CEC,氟代碳酸乙烯酯FEC,碳酸亚乙烯酯VC等与1%的草酸就能够剧烈反应,但与10%的硫酸才有初步的缓慢反应。这种和有机酸反应比较快而和无机酸反应比较慢的原因,我还不得而知。 碳酸酯与碱的反应 我们知道,碱溶液 如NaOH溶液常常用于吸收空气中的二氧化碳。但是,当NaOH溶液与碳酸酯作用时,却能够剧烈的反应并释放出大量的CO2,这一点还真是我没有想到过的。我曾经做过实验,在50L桶装的电解液废液中加入几升NaOH溶液,如果碱浓度在25%以上则可以形成非常强烈的反应,液浪滚滚,气泡翻腾,反应强烈放热, 并且生成大量的从浅黄色到黄楬色的沉淀. 有固体在有机相中析出来. 如果碱液浓度更高,反应则更加剧烈甚至失控. 如果将不同的碳酸酯与碱的反应进行比较,我们发现, 与碱反应,线性碳酸酯比环状碳酸酯活泼.其中EMC又明显比DMC或DEC活泼. 环状碳酸酯中,EC比明显PC活泼(这一点正好与在酸性的活性顺序相反). 带有取代基的环状碳酸酯如CEC,FEC,VC均能和中等浓度的液碱剧烈反应. VC和三乙胺, FEC,CEC和三乙胺都能够剧烈反应. 甚至于碱性不是那么强的5%碳酸钠溶液,也能够与EC、EMC、FEC、CEC比较强烈的反应,在此条件下,PC、 DMC、 DEC则反应相对温和得多. 值得注意的是,如果没有水的存在,VC与纯净的三乙胺、NaOH固体和DMC、FEC和三乙胺混合, 混合之后开始都不发生反应,但一旦加入适量的水,反应即剧烈发生。说明这一反应在水的帮助下(水解反应的媒介)才能比较顺序的进行。 同时是否也在暗示:在合成VC的过程中,要严格的管控CEC和三乙胺的水分,否则CEC与三乙胺第一步反应生成的VC,接着又和三乙胺快速反应掉而转化成不需要的物质而浪费了。 由此我们想到,如果锂电池的正极材料中残碱较多,他们也会引发与EC,EMC,FEC这类材料的反应而导致溶剂分解,可能出现产气的现象。以前我读到过一篇专利,对三元材料进行水洗处理,可以提高电池的循环性能减少胀气, 该专利中介绍其原因是去除了碱或碳酸盐避免其与电解液中HF反应产生气体。从我们的实验结果分析,我推测更可能的原因是通过水洗去除了氧化锂等残碱,避免了它和碳酸酯的反应的产气.毕竟电解液中的HF是很少的PPM级别的浓度,而碳酸酯是很多的。 以前我很奇怪电解液对HF那么敏感,为什么还有人在电解液中加入酸酐(与水作用就生成酸了)而且还确实有效。通过对碳酸酯性质的研究,我想这是因为:碳酸酯类对碱相对比较敏感,加入少量的酸酐,可以利用酸酐与氧化锂或氧化镍等作用,减少了碱性物质的量或碱的强度, 减少了碳酸酯与碱作用的分解导致的产气,也能够起到抑制电池胀气提高高温循环性能的效果(高温下碱与碳酸酯的副反应更快)。 如果这个规律是主导性的,根据碳酸酯与碱反应的活性顺序, 如果要用到高碱性的正极材料,最好是减少EMC、EC、FEC的用量,以减轻其分解.或者就是在电解液中加入酸性的成分如酸酐、硫酸酯类化合物以抑制其碱性,或者两者皆用之。 碳酸酯作为甲基化试剂 碳酸二甲酯是一种可用的甲基化试剂,但此反应在电解液中出现的机会不多,不过由于甲氧基的活性比乙氧基强一点,DMC的化学活性性也理论上比DEC要高一些.因此DMC的化学稳定性比EMC或DEC应该会高一些. 但是,EMC由于存在酯交换反应,这个因素使得EMC的化学稳定性变得更差.